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SUMMARY
Attention-based models trained on protein sequences have demonstrated incredible success at classifica-
tion and generation tasks relevant for artificial-intelligence-driven protein design. However, we lack a suffi-
cient understanding of how very large-scale models and data play a role in effective protein model develop-
ment. We introduce a suite of protein language models, named ProGen2, that are scaled up to 6.4B
parameters and trained on different sequence datasets drawn from over a billion proteins from genomic,
metagenomic, and immune repertoire databases. ProGen2 models show state-of-the-art performance in
capturing the distribution of observed evolutionary sequences, generating novel viable sequences, and
predicting protein fitness without additional fine-tuning. As large model sizes and raw numbers of protein se-
quences continue to become more widely accessible, our results suggest that a growing emphasis needs to
be placed on the data distribution provided to a protein sequence model. Our models and code are open
sourced for widespread adoption in protein engineering. A record of this paper’s Transparent Peer Review
process is included in the supplemental information.
INTRODUCTION

Proteins are the workhorse of life—performing essential and ver-

satile functions that are critical to sustaining human health and

the environment. Engineering proteins for our desired purposes

enables use-cases in industries across pharmaceuticals, agri-

culture, specialty chemicals, and fuel. Current tools for protein

engineering are limited and, as a consequence, mainly rely on

directed evolution,1 a process of stochastically mutating a start-

ing/wild-type sequence, measuring each variant, and iterating

until sufficiently optimized for improved function, also referred

to as fitness. Nature as an underlying generative process has

yielded a rich, complex distribution of proteins. Due to exponen-

tially broken barriers in DNA sequencing, we now collect natural

sequences at a previously unimaginable pace. In parallel, we

have seen machine learning models perform exceedingly well

at capturing data distributions of images and natural language.2,3

In particular, the transformer4 has proven to be a powerful lan-

guage model and can serve as a universal computation engine5

across data modalities.

Language modeling tries to capture the notion that some

sequences are more likely than others by density estimation.

For large language models (LLMs), transformer models equip-

ped with self-attention mechanisms6 have shown to be partic-

ularly well suited to capture dependency among sequence
968 Cell Systems 14, 968–978, November 15, 2023 ª 2023 Elsevier I
elements while being capable to scale vast amounts of model

parameters.7,8 In this work, we adopt causal LLMs in the form

of autoregressive decoders for the modeling of proteins. The

raw amino acid sequences, which constitute a protein, are

considered as observed sequences for the maximum likeli-

hood-based learning. The problem of conditional protein

generation is naturally cast as a next-token prediction task.

Specifically, few-shot learning3 models tasks as autoregres-

sive sampling conditional on a small set of examples (or

shots). Notably, LLMs possess the capacity to solve the in-

tended task by increasing the number of parameters without

task-specific fine-tuning of the model. These few-shot abilities

appear to emerge under certain parameter thresholds,9 which

motivates the exploration of such capabilities for protein

engineering.

Methods for generating protein sequences that are

functional and have desired properties have recently seen

tremendous progress. Simple, traditional methods that

leverage multiple sequence alignments of similar proteins,

such as ancestral sequence reconstruction,10 have demon-

strated the ability to generate useful proteins but are limited

in scope. A host of statistical and machine learning techniques

exist to access a larger sequence space. Most still train on a

fixed protein family to capture coevolutionary signals present

within a set of homologous sequences—ranging from direct
nc.
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coupling analysis techniques11 to generative adversarial net-

works.12 More versatile models trained on unaligned and un-

related sequences have emerged13 for functional sequence

design. Language models, in particular, provide a powerful ar-

chitecture to learn from large sets of amino acid sequences

across families for the purpose of generating diverse, realistic

proteins.14,15 Sequences generated by protein language

models (PLMs) are typically predicted to adopt well-folded

structures, despite diverging considerably in sequence space.

PLMs can be further focused on specific families of interest by

fine-tuning on a subset of relevant proteins. In prior work, fine-

tuning the ProGen model on a set of lysozyme families yielded

proteins retaining functional behavior and even rivaling that of

a natural hen egg white lysozyme.16 Similar strategies have

been employed for domain-specific PLMs, such as the anti-

body-specific IgLM model.17 By conditioning on chain

type and species-of-origin, IgLM is capable of generating

diverse sets of antibodies resembling those of natural immune

repertoires.

Understanding the functional effects of sequence mutations is

critical for the rational design of proteins. Methods for predicting

such effects typically fit into one of two categories: family-spe-

cific models trained on aligned sequences or universal models

trained on unaligned sequences. Models based on alignments

of sequences18–20 face several key challenges limiting their

application to protein engineering tasks. First, for proteins with

few evolutionary neighbors, the MSA is likely to be shallow and

contain little information about functional constraints. Second,

for some families of proteins (such as antibodies), there are

many sequences available, but they are non-trivial to align.

Finally, evaluation of novel variants requires that new sequences

be aligned to theMSA used for training; this can be challenging in

cases with large insertions or deletions (indels). These limitations

prompted the development of fitness predictors based un-

aligned sets of sequences, particularly transformer models

trained on large databases of protein sequences. ESM-1v21

tasks a transformer encodermodel trained viamasked-language

modeling with estimating heuristic likelihood of mutations rela-

tive to the wild-type sequences. Autoregressive PLMs have

also been applied to fitness prediction.13 These models are

intrinsically capable of modeling indels, as well as epistatic mu-

tations. The RITA family of models22 demonstrated that not only

do autoregressive PLMs effectively estimate protein fitness, but

performance also be further improved by scaling model capac-

ity. Tranception23 demonstrated that combining autoregressive

language models with retrieval24 capabilities provides a means

of enhancing a generalist model with family-specific information

from MSAs at inference.

In this work, we perform a study on the effect of very large-

scale models and data. We train a suite of models ranging

from 151M to 6.4B parameters (one of the largest published for

a single protein transformer) on different datasets collectively

totaling 1B protein sequences from genomic, metagenomic,

and immune repertoire databases. We analyze the generations

from universal and family-specific models through predicted

structural and biophysical properties. Finally, we examine fitness

prediction on existing experimental datasets, whichmotivate hy-

potheses on the role of data distribution and alignment in protein

language modeling.
RESULTS

Scaling generative protein language models
Autoregressive languagemodels have proven useful for a variety

of protein engineering tasks, including functional sequence

generation16 and protein fitness prediction.22,23 This class of

models originated in natural language processing, where recent

trends have shown that larger models are increasingly perform-

ant and can acquire emergent capabilities with scale.3 To further

assess the behavior of large-scale PLMs, we have trained a suite

of models, ranging from 151M to 6.4B parameters (Figures 1A

and 1B; Table S1), called ProGen2.

The ProGen2 models are primarily trained on a universal set of

proteins from genomic and metagenomic sources. These se-

quences are drawn from non-redundant subsets of UniProtKB,25

clustered at 90% sequence identity (UniRef9026), and the BFD

metagenomic database,27 clustered at 30% identity (BFD30).

We additionally considered two alternative data distributions for

model training. First, we reduced the stringency on metagenomic

sequences and train ProGen2-BFD90 on a combination of

UniRef90 and BFD90 (BFD clustered at 90% sequence identity).

Second, we explored use of immune repertoire sequences (i.e.,

antibodies) from the observed antibody space (OAS) database28

for modeling training. The sequences from OAS were clustered

at 85% sequence identity and used to train ProGen2-OAS.

To evaluate the ProGen2models, we first consider the capacity

of increasingly large models to capture the distribution of

protein sequences. We then explore applications of autoregres-

sive PLMs, focusing on sequence generation (Figure 1E) and

fitness ranking (Figure 1F). Through our analyses, we highlight

the role and importance of data distributions in training and

applying PLMs.
Capturing the distribution of observed proteins
We first evaluate the capacity of ProGen2 to capture the distribu-

tion of natural sequences. In particular, we focused on its ability

to predict unobserved natural sequences, quantifying perfor-

mance in terms of perplexity on a held-out test set. We find

that larger models yield substantially lower perplexities, consis-

tent with the idea that, despite massive model size, we are far

from the overfitting regime (Figures 1C and 1D; Table S2). For

a sequence x = ðx1; x2;.; xnÞ of n tokens, the perplexity is calcu-
lated as follows:

pplðxÞ = exp

 
� 1

n

Xn
i = 1

ln pðxiÞ
!

= exp

 
� 1

n

Xn
i = 1

lnðsoftmaxðlogitsðxÞ½i� Þ Þ½xi�
!

(Equation 1)

where logitsðÞ maps each token xi to a vector of logit values un-

der the causal languagemodel p.We report the average perplex-

ity over the held-out partitions of the datasets.

We caution, however, that these results only reflect the capac-

ity of the model to capture the training distribution p0 from which

the data were drawn, not necessarily relevant measures of mo-

lecular fitness. To be more precise and borrowing notation

from Weinstein et al.,29 let pN be the stationary distribution of
Cell Systems 14, 968–978, November 15, 2023 969
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Figure 1. Overview of ProGen2 models for protein sequence generation and scoring
(A) Diagram of model pretraining scheme and autoregressive amino acid prediction.

(B) Number of parameters (log scale) for ProGen2 models.

(C) Perplexity (unitless) for sequences held out from pretraining dataset clustered at 90% sequence identity (Test-max90).

(D) Perplexity (unitless) for sequences held out from pretraining dataset clustered at 50% sequence identity (Test-max50).

(E) Diagram of sequence generation with an autoregressive language model.

(F) Diagram of sequence log likelihood calculation for protein fitness prediction.
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the evolutionary process, such that log pN is proportional to log

fitness log f. Phylogenetic effects, as well as other imbalances in

the dataset, can result in a situationwhere p0spN; therefore, ac-

curate estimation of the training data distribution p0 does not

necessarily imply accurate estimation of pN or (consequently) f.

Protein sequence generation
Given the capacity of the ProGen2 family of models for capturing

the distribution of observed evolutionary sequences, we next as-

sessed the ability of the models to generate novel sequences.

We evaluated sequence generation in three settings: universal

protein generation from pretraining, fold-specific generation af-

ter fine-tuning, and antibody generation after domain-specific

pretraining.

Pretrained models generate diverse protein sequences

Prior work has demonstrated that sequences generated by

PLMs can adopt a wide variety of folds, often with considerable

deviation in sequence from observed proteins.14,15 To assess

the generative capacity of ProGen2 models, we generated

6,757 sequences with the ProGen2-xlarge model. The three-

dimensional structure of each sequence was predicted using

ESMFold.30 For each structure, we identified the most structur-

ally similar natural protein in the PDB31 using Foldseek.32 In Fig-

ure 2A, we show the relationship between structural similarity to

natural proteins (TMscore) and ESMFold prediction confidence

(pLDDT). The majority of structures were confidently predicted

(median pLDDT of 85.2) and had structural homologs in the

PDB (median TMscore of 0.89). Although the generated se-

quences frequently adopt previously observed folds, they do

so with low sequence identity to natural proteins (Figure 2B). In

Figure 2C, we show a generated sequence adopting a superhe-

lical fold. The closest structural homolog in the PDB is the central

domain of a stress-induced protein (PDB ID 3GCO-A), which

aligns with a portion of predicted structure. Despite adopting
970 Cell Systems 14, 968–978, November 15, 2023
nearly identical folds, the sequence identity between the gener-

ated and natural proteins is only 13.3%. For another generated

sequence, with a predicted b-roll structure (Figure 2D), the

closest structural match is an isomerase with a truncated b-roll

fold (TMscore 0.579). Interestingly, we observe that the gener-

ated protein resembles an idealized version of the natural pro-

tein, with uniform beta sheets and connecting loops. Figure 2E,

we show a generated protein with a ring-like structure. This pro-

tein contains similar structural elements to a eukaryotic initiation

factor (PDB ID: 3WJ9) but forms a tertiary structure with a greater

diameter. In a final example, we show a large generated protein

resembling an intracellular transport protein. Despite consider-

able divergence in sequence space (14.4% identity) over 781

residues, the generated protein is predicted to fold into a well-

formed structure. Taken together, these examples illustrate

some of the unique properties of sequences generated by

ProGen2.

Fine-tuning enables family-specific sequence

generation

Next, we considered generation from amodel fine-tuned on pro-

tein sequences adopting a common structural architecture. The

ProGen2-large model was fine-tuned for two epochs on 1M se-

quences, from Gene3D33 and CATH,34 adopting a two-layer

sandwich architecture (CATH 3.30). To understand the effects

of extended fine-tuning, we generated 30,000 sequences using

the model parameters after the first and second epoch of fine-

tuning. Sequences were generated using a sweep over sampling

temperature and nucleus sampling probability parameters.

Sampling temperature effectively reshapes the model’s predic-

tion confidence, with values below T = 1 sharpening the

distribution toward the most confident amino acid predictions.

Nucleus sampling removes low-confidence amino acids from

the predicted distribution, such that only the minimal set of

amino acids contributing to P are selected from. To assess the



Figure 2. Generating from a pretrained language model trained on a universal protein dataset

Legend in top right corner indicates confidence level (and structural coloring) associated with pLDDT values.

(A) Relationship between ESMFold prediction confidence (pLDDT) and similarity to natural protein structures in the PDB (TMscore) (n = 6,757).

(B) Relationship between sequence identity and similarity to natural protein structures in the PDB (TMscore) (n = 6,757).

(C–F) Comparison of predicted structures for generated sequences (colored by pLDDT) and their closest structural counterparts in the PDB (gray). Sequence

identities and TMscores are calculated against the closest structural matches in the PDB.

(C) Superhelical-fold protein generated by the model, with very low sequence identity and high structural similarity to a stress-induced protein domain.

(D) b-roll protein generated by the model, with low sequence identity to the natural protein. The generated protein contains more ordered secondary structure

(uniform-length beta sheets, shorter loops) than other beta-roll folds found in the PDB.

(E) Generated protein with similar topology but low sequence identity to a eukaryotic initiation factor. The generated protein adopts a fold with a wider radius than

the natural protein.

(F) Generated protein adopting a fold similar to intracellular transporter proteins. The structure is confidently predicted despite low sequence identity and

extended length (781 residues).
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effect of sampling parameters on structure diversity within the

common architecture, we predicted structures for all 60,000 se-

quences with ESMFold and calculated TMscores and sequence

identities against the most similar structures PDB using Fold-

seek.32 We chose to validate both sequence identity and

structural similarity against the PDB, rather than large sequence

databases without known structures, to assess the capacity of

ProGen2 to generate diverse sequences adopting natural folds.

For both measures, we observed higher similarity to natural

proteins with extended fine-tuning (Figures 3A–3D). Among se-

quences generated with the same model checkpoints, sampling

parameters are strongly correlated with sequence novelty (i.e.,

higher sampling temperature or nucleus probability yields lower

sequence identity), as shown in Figures 3A and 3B. When we

compared structural diversity, a similar trend emerged, with

more restrictive sampling parameters typically yielding struc-

tures more closely resembling natural proteins (Figures 3C and

3D). We next analyzed the diversity of generated two-layer sand-

wich proteins according to their sequence identity and TMscore

to the closest structures in the PDB using Foldseek.32 The vast

majority of sequences were confidently predicted to adopt struc-

tures similar to natural proteins (median TMscore of 0.85, Fig-
ure 3E). As with the sequence generated by pretrained models,

the sequences fold into these structures despite considerable

deviation in sequence identity (median identity of 23.4%, Fig-

ure 3F). Among the more novel structures, the primary source

of diversity is in the ligand-binding regions, whereas the non-

binding regions resemble natural proteins (Figures 3G–3I). Inter-

estingly, in all cases, the predicted structures present a clear

void suitable for a ligand and evenmimic the proximal secondary

structures of natural proteins. The lower prediction confidence

for these regions may be due to the ligand-agnostic nature of

the model itself. These results demonstrate that the sequences

generated by a fine-tuned model sample diversity at functional

regions, while maintaining the common architecture of the

training dataset.

Immune repertoire pretraining for antibody sequence

generation

Generation of antibody sequences is of particular interest for

construction of libraries for therapeutic discovery.13,17 However,

only relatively small generative models have been trained for this

task to date. We investigated the properties of antibody se-

quences generated by ProGen2-OAS, a 764M parameter model

pretrained on only natural antibodies. First, we generated 52K
Cell Systems 14, 968–978, November 15, 2023 971



Figure 3. Generating from a language model fine-tuned on two-layer sandwich architecture proteins

Legend in bottom right corner indicates confidence level (and structural coloring) associated with pLDDT values. All box plots have center at median, bounds

indicating interquartile range (IQR), whisker length of 1.53 IQR, and points outside of 1.53 IQR range shown as outliers.

(A–D) Effect of fine-tuning duration on the sequential and structural similarity of generated proteins to natural proteins. Extended fine-tuning (two epochs) yields

generated sequences more similar to those observed in nature (n = 60,000).

(A) Higher sampling temperature generates more diverse protein sequences.

(B) Higher nucleus sampling probability produces greater sequence diversity.

(C) In general, lower sampling temperature results in sequences adopting structures more similar (higher TMscore) to those found in the PDB.

(D) Lower nucleus sampling probability yields generations with reduced structural diversity.

(E) Relationship between ESMFold prediction confidence (pLDDT) and similarity to natural protein structures in the PDB (TMscore), divided by number of fine-

tuning epochs (n = 60,000).

(F) Relationship between sequence identity and similarity to natural protein structures in the PDB (TMscore), divided by number of fine-tuning epochs (n = 60,000).

(G–I) Comparison of predicted structures for sequences generated by the fine-tuned language model (colored by pLDDT) and the most structurally similar

proteins in the PDB (transparent). Ligands bound by the natural proteins are shown in pink.

(G) Generated protein adopting a similar fold to a natural protein binding a flavin mononucleotide ligand. The structure of the generated protein closely resembles

that of the natural protein near the ligand-binding site, leaving appropriate space available for binding.

(H) Generated protein similar to a natural flavin-mononucleotide-binding protein. The binding site of the generated protein is confidently predicted and reserves

appropriate space for the ligand.

(I) Generated protein closely resembling a natural protoporhyrin-binding protein. The structure of the generated protein appears to properly accommodate the

ligand but is predicted with low confidence in the unstructured loop regions near the binding site.
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non-redundant antibody sequences with the pretrained model.

However, experimental limitations of sequencing studies result

in over half of antibody sequences in the OAS being truncated

at the N termini by 15 or more residues.35 As such, direct gener-

ation from the model yields sequences mirroring the training

distribution, rather than fully formed antibody sequences. To

overcome this bias in the data and produce full-length antibody

sequences, we initiated generation with a three-residue motif

commonly found at the beginning of human heavy-chain se-

quences (EVQ).17 Using this prompting strategy, we generated

an additional 470,000 full-length antibody sequences (Figure 4A).

All of the following analyses are based on this full-length heavy-

chain-like set.

We next measured the distribution of CDR loop lengths for

the generated antibody sequences according to the Chothia

numbering scheme.36 In Figure 4B, we show the length distri-

bution for each CDR loop. CDR1 and CDR2 loops are typically
972 Cell Systems 14, 968–978, November 15, 2023
generated with lengths of seven and six residues, respec-

tively, mirroring the biological restriction on length diversity

for these loops. For CDR3 loops, which are the most variable

due to the insertion of an additional gene segment (D-gene),

we observe a wide range of loop lengths (median length of

12 residues). Interestingly, less restrictive (higher) values for

both sampling temperature and nucleus probability had the

effect of truncating CDR3 loops (Figure 4C). For CDR1 and

CDR2, these parameters had little effect, although additional

lengths beyond the most frequent for each loop tended to

be sampled more often with less restrictive parameters (see

outlier points).

Potential antibody therapeutics often require extensive optimi-

zation to improve their physical properties. Collectively referred

to as developability, these properties include thermal stability,

expression, aggregation propensity, and solubility.37 Here, we

focused on quantifying the aggregation propensity and solubility



Figure 4. Generating from a pretrained antibody-specific language model

All box plots have center at median, bounds indicating interquartile range (IQR), whisker length of 1.53 IQR, and points outside of 1.53 IQR range shown as

outliers.

(A) Comparison of sequence lengths for unprompted and prompted generation strategies. Prompting produces full-length sequences, without N-terminal

truncation observed in training dataset.

(B) Distribution of CDR loop lengths (according to Chothia numbering) for generated antibody sequences. CDR1 and CDR2 are predominantly observed to have

standard human loop lengths, while a broad range of CDR3 loop lengths are observed (n = 470,000).

(C) Impact of sampling parameters on CDR loop lengths (n = 470,000). Non-standard CDR1 and CDR2 loop lengths are sampled with higher temperature and

nucleus probability (see additional outlier points). CDR3 loops tend to be shorter with higher temperature and nucleus probability.

(D) Impact of sampling parameters on aggregation propensity of generated sequences (n = 470,000). Higher sampling temperature results in lower aggregation

propensity for generated sequences, whereas changing nucleus probability has limited effect.

(E) Impact of sampling parameters on solubility of sequences (n = 470,000). Higher sampling temperature results in higher solubility for generated sequences,

whereas changing nucleus probability has limited effect.

(F) Likelihood ranking of generated antibody sequences with the ProGen2-base language model. Aggregation propensity is not significantly reduced among the

top-50%-ranked antibody generations. Solubility is improved by selecting the top 50% of ranked antibody generations.
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of generated sequences according to their SAP scores38 and

CamSol-intrinsic profiles.39 We found that for both aggregation

propensity and solubility, sequences generated with less restric-

tive parameters display improved developability (Figures 4D and

4E). Given the effective zero-shot predictive capabilities of

PLMs,22,23 we also investigated whether a universally pretrained

model could be used to filter generated antibody libraries and

improve their developability profiles. In Figure 4F, we compare

the aggregation propensity and solubility of the full set of gener-

ated sequences with the top-50% as scored by the ProGen2-

base model. Among the top-ranked sequences, aggregation

propensity improves only marginally, whereas the solubility of

the sequences shows a favorable shift. These results provide

meaningful guidance for generation of antibody sequence li-

braries with PLMs. In practice, generating with less restrictive

sampling parameters and filtering with a universal PLM should

provide the most developable set of sequences.
Zero-shot fitness prediction
Generative models for protein sequence design should ideally

learn a representation that aligns with our desired functional at-

tributes. Experimental techniques in the wet laboratory have al-

lowed for the collection of protein libraries that associate a given

sequence to one or many functional scalar values, which de-

scribes a ‘‘fitness landscape.’’ We examine how experimentally

measured fitness landscapes correlate with a generative

model’s likelihood in a zero-shot manner, meaning there is no

additional fine-tuning in a supervised setting with assay-labeled

examples or an unsupervised setting with a focused set of ho-

mologous sequences.

Scale does not improve fitness prediction on narrow

landscapes

For a proper comparison to Hesslow et al.’s22 models with a

similar architecture to ProGen2, yet trained on a different data

distribution, we first characterize zero-shot performance on
Cell Systems 14, 968–978, November 15, 2023 973
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Figure 5. Zero-shot fitness prediction performance

(A) Zero-shot performance of ProGen2 models and alternative methods on narrow fitness landscapes. Model scale provides limited performance benefits and

even degrades zero-shot capabilities for the largest models.

(B) Zero-shot performance of ProGen2 models on wide fitness landscapes (units indicated for each bar). Performance typically improves with model scale and

may lead to emergent zero-shot capabilities for low-homology, highly epistatic landscapes, such as GB1 (structure with mutation sites shown).

(C) Comparison of zero-shot fitness prediction performance for 2.7B parameter models trained on Uniref90+BFD30 and Uniref90+BFD90 (units indicated for

each bar).

(D) Zero-shot performance of universal ProGen2 models and the antibody-specific ProGen2-OAS for binding datasets and general antibody fitness prediction

tasks (e.g., stability and expression). Models trained on broad evolutionary sequence datasets outperform antibody-specific models on both tasks.
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narrow fitness landscapes from Riesselman et al.,19 which is

composed mainly of single substitution deep mutational scan

experiments (Figure 5A; Table 1A). EVE and Tranception (with

retrieval), which operate on multiple sequence alignments,

perform similarly well to the best-performing single-sequence

language models. We observe that our smallest model

(ProGen2-small), with an order of magnitude less parameters

to RITA-XL, exhibits higher average performance across zero-

shot tasks, indicating the importance of pretraining data distribu-

tions. In contrast to RITA, the ProGen2 training data are amixture

comprised of an identity-reduced set of sequences from Uniref

along with sequences from metagenomic sources. To assess

the impact of including metagenomic sequences, we compared

the performance of two ProGen2 models trained on varying

levels of metagenomic sequence redundancy. Specifically, we

compare 2.7B parameter models trained on UniRef90+BFD30

and UniRef90+BFD90. In Figure 5C, we show that inclusion of

more metagenomic sequence slightly improves fitness predic-

tion performance on narrow landscapes (Table S5). Our best

ProGen2 model outperforms or matches all other baselines

spanning a variety of differing modeling strategies, amplifying

the importance of understanding what set of sequences are pro-

vided to the model for training. Ultimately, an ensemble pro-
974 Cell Systems 14, 968–978, November 15, 2023
duced by averaging the scores from ProGen2-medium,

ProGen2-large, ProGen2-xlarge, ProGen2-base, and ProGen2-

BFD90 for each sequence proved more effective than any indi-

vidual model.

We find that, as model capacity increases, performance at

zero-shot fitness prediction (averaged across all datasets in

the narrow landscape) peaks at 764M parameters (ProGen2-

base) before decreasing with larger and larger models (Fig-

ure 5A). A similar trend is observed for the ESM-2 family of

models, which peak in performance at 650M parameters. This

stands in contrast to model perplexity, which improves system-

atically with model scale (Table S2). Our results are in line with

Weinstein et al.,29 where the authors show that when p0spN,

fitness estimates from misspecified models can systematically

outperform fitness estimates from well-specified models (even

in the limit of infinite data), by projecting the data distribution

p0 onto a model class closer to pN than p0 itself. Intuitively,

this result says that phylogenetic biases and other distortions

in the dataset can be partially corrected for by using a relatively

small but well-chosen model, which is capable of describing the

key features present in real fitness landscapes but is not capable

of exactly matching the data distribution. Our results provide ev-

idence that this effect can hold not only in the context of single



Table 1. Zero-shot fitness prediction on experimentally measured landscapes

Model

Narrow (A) Wide (B) Antibody (C)

Average (r) AAV (AUC) GFP (AUC) CM (AUC) GB1 (top100avg) Binding (r) General (r)

RITA-XL 0.443 – – – – – –

EVE 0.511 – – – – – –

Tranception (no retrieval) 0.447 – – – – – –

Tranception (retrieval) 0.503 – – – – – –

MSA transformer 0.476 – – – – – –

ESM-1v 0.475 – – – – – –

ESM-2 (151M) 0.470 0.523 0.561 0.697 0.218 0.415 0.664

ESM-2 (650M) 0.506 0.588 0.586 0.684 0.850 0.380 0.603

ESM-2 (3B) 0.473 0.512 0.609 0.688 0.552 0.406 0.643

ProGen2-small 0.456 0.585 0.513 0.677 0.009 0.436 0.613

ProGen2-base 0.505 0.615 0.635 0.717 0.005 0.415 0.732

ProGen2-large 0.485 0.652 0.844 0.664 0.242 0.416 0.728

ProGen2-xlarge 0.476 0.678 0.841 0.638 0.846 0.404 0.737

ProGen2-ensemble 0.518 – – – – – –

ProGen2-OAS – – – – – 0.373 0.659

(A) Performance on narrow experimentally measured fitness landscapes. ProGen2-small outperforms an order of magnitude larger RITA-XL and

ProGen2-base is the best-performing ProGen2, indicating larger model capacity does not always translate to improved predictive performance.

ProGen2 models outperform or match other baseline methods across a variety of modeling strategies, suggesting the distribution of observed evolu-

tionary sequences provided to the model, along with its inherent biases, likely plays a considerable role. The average spearman is reported with data

and baselines provided by Hesslow et al.22

(B) Performance on wider experimental landscapes. Larger model capacity may translate to benefits for landscapes involving higher edit distances or

low-homology settings. Particularly for GB1 (a low-homology, epistatic landscape), the largest model may demonstrate emergent behavior in finding

top-ranked sequences.

(C) Performance on antibody-specific landscapes. Using redundancy-reduced proteins from immune repertoire sequencing studies, OAS,28 does not

lead to better fitness prediction for antibodies. In particular, we examine antibody fitness predictive performance for binding KD values and general

protein properties including expression quality and TM melting temperatures. The models trained on universal protein databases are better at predict-

ing general properties compared with binding affinity. The binding prediction performance is considerably high given that the associated antigen is not

provided to the model.
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protein family datasets but also in the context of large-scale

datasets containing evolutionarily diverse proteins and using

large-scale transformer models.

Scale improves fitness prediction on wide mutational

landscapes

Although bigger models may not translate into better zero-shot

fitness performance in general, they may still have advantages

in certain cases. Most of the available fitness assays to which

we compare focus on well-studied proteins with large numbers

of evolutionarily similar sequences andmeasure the fitness/func-

tionality of mutants only one or two mutations away from a wild-

type sequence. Intuitively, regions of sequence space with very

low probability under p0 are likely to be especially poorly

described with smaller models; therefore, in these regions, both

fitness estimation and generation may suffer. Empirically, we

find some suggestive evidence that larger models outperform

smaller models at fitness estimation in wider landscapes where

sequences are farther from any natural sequence (Figure 5B;

Table 1B). In particular for the GB1 library, a challenging low-ho-

mologyproteinmutatedat positionswith non-linear epistasis, our

largestmodelsmayexhibit emergent behavior9 in zero-shot iden-

tification of the highest fitness variants. We additionally note that

training data distribution plays a critical role onwider fitness land-

scapes, with some landscapes benefiting from inclusion of more
metagenomic sequences and others showing signs of perfor-

mance degradation (Figure 5C; Table S5).

Antibody-specific training does not improve fitness

prediction

On antibody-specific landscapes, our results again indicate

more attention needs to be placed on the distribution of se-

quences provided to a model during training. We examine the

zero-shot fitness prediction of binding (KD) and general proper-

ties (expression and melting temperature TM) of antibodies in

Table 1C. Samples from immune repertoire sequencing studies

seem like an intuitive choice for learning powerful representa-

tions useful for antibody fitness prediction tasks.40,41 However,

our ProGen2-OAS model performs poorly compared with pre-

trained models trained on universal protein databases (Fig-

ure 5D). This is likely reflective of the divergence between the

properties of natural antibodies, which must only be sufficiently

optimized to circulate in the body and neutralize an antigen,

and engineered sequences, which are subject to non-biological

pressures throughout production. Further, the types of muta-

tions produced during antibody engineering campaigns (such

as deep mutational scans) are unlikely to be observed in natural

sequences and thus present an out-of-distribution problem for

PLMs trained on immune repertoire data. Curiously, the binding

prediction performance of the universal ProGen2 models is
Cell Systems 14, 968–978, November 15, 2023 975
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non-negligible and may be useful in practical antibody engineer-

ing campaigns, although the corresponding antigen is not pro-

vided to the model for likelihood calculation.

DISCUSSION

Protein languagemodelswill enable advances in protein engineer-

ing and design to solve critical problems for human health and the

environment.However, therearemanyopenquestions that remain

as we begin to realize these advances. In this work, we introduce

the ProGen2 suite of models and demonstrate the effectiveness

ofgenerative languagemodels for a variety ofproteindesign tasks.

Throughout the study, we investigate the impact of increasing

model scale formodeling protein sequence landscapes. Asmodel

capacity increases, we continue to see improvements in fitting the

distribution of natural protein sequences (lower test perplexity).

This suggests that currentmodels still under fit the sequencedata-

sets available, and we should expect larger models to deliver

further improvements along this axis. Next, we demonstrate the

utility ofgenerative languagemodels for creatingnovel sequences.

As shown in prior works,15 pretrained generative models produce

diverse sequences spanning the functional and structural spaceof

natural proteins. Sequences from ProGen2 typically adopt natural

folds (as predicted by ESMFold30) while diverging in sequence

space. Further,we show that fine-tuningProGen2models enables

a narrowing of the sequence landscape for targeted generation of

particular families. Similar approaches have been used to create

functional enzymes16 and are a promising approach for protein

design. Finally, we show that the likelihoods learned by LLMs,

such as ProGen2, are a useful proxy for protein fitness and are

competitive with state-of-the-art methods across a variety of

sequence landscapes.

Scaling transformer language models has yielded impressive

performance and even emergent capabilities for natural language

processing.3,7 Several studies have investigated whether these

scaling trends apply to protein sequence modeling and have typi-

cally included that larger models indeed provide improvements

across a variety of tasks.22,30,42 The RITA study found consistent

improvements for protein fitness prediction with increasingmodel

capacity up to 1.2B parameters.22 Similarly, the ESM-2 models

(trained for masked-language modeling) were better able to pre-

dictproteinstructure inbothunsupervisedandsupervisedsettings

as model sizes were increased up to 15B parameters. Since their

initial release, the ProGen2 models have also been assessed on

the extensive ProteinGymbenchmark,23which is dividedbetween

substitution and indel landscapes. This analysis found that greater

model scale typically yielded improvements in fitness prediction

for both regimes. In contrast to these results, we show that scaling

model capacity is not a panacea for all protein design tasks.

Although larger ProGen2 models improved zero-shot fitness pre-

diction on broader mutational landscapes, for narrower land-

scapes composed primarily of amino acid substitutions, we

observed a degradation of performance for our largest models.

In such cases, models based on multiple sequence align-

ments,20,23whichprovidedetailedcontext of the local fitness land-

scape, also performed well for fitness prediction. The test-max50

and wide fitness landscape results suggest that scale may partic-

ularly show advantages for out-of-distribution, difficult, or tail-end

distribution problems. This is exemplified by the significant ad-
976 Cell Systems 14, 968–978, November 15, 2023
vances in zero-shot prediction at larger model scales on the chal-

lenging GB1 landscape. Finally, it is worth consideration that

fitness as defined as an average spearman across the multiple

experimental datasets in this and other studies comes with its

own set of biases and may not be the most reliable criteria for

evaluation of models for protein engineering. We refer the reader

to prior work from Dallago et al.43 and Yang et al.44 for further

discussion.

Although pretraining on larger sets of sequenceswould seem to

bean intuitivemeansof creatingbroadly usefulmodels, our results

suggest that the composition of the pretrainingdataset is of critical

importance. For zero-shot predictions on narrow fitness land-

scapes, larger ProGen2 models perform relatively poorly despite

capturing the pretraining sequence distribution better. This indi-

cates a divergence between the two and could potentially be

remedied by identifying a more suitable pretraining corpus.

Conversely, for broader mutational landscapes, larger models

that better capture the pretraining dataset typically improve

zero-shot performance. For the GB1 landscape in particular, pre-

training on BFD90 rather than BFD30 yielded considerable im-

provements at the same model scale. Analysis of ProGen2 and

other recent models on the ProteinGym benchmark further high-

lights the importance of pretraining distribution because fitness

prediction improved for sequenceswithgreater numbersof homo-

logs inUniRef100.23 Perhaps themost distinctive illustration of the

importance of dataset-task alignment is the lackluster zero-shot

performance of models pretrained on immune repertoire se-

quences from the OAS. For both binding and general properties

of antibody sequences, ProGen2 models pretrained on universal

sets of protein sequences (rather than just antibodies) outper-

formed themodel pretrained on antibodies alone (even when hav-

ing fewer parameters). In the case of antibodies, this may be

because the selective pressures on natural antibodies diverge

from the properties evaluated experimentally (such as thermal sta-

bility and binding affinity), although there may be tasks not

explored in this study that are better approached with an anti-

body-specificmodel, such asProGen2-OAS.More broadly, these

results suggest that to improvemodel performancewemust care-

fully consider the alignment of the pretraining dataset and the

downstream task.

Ethics statement
Predicting the fitness of a protein sequence and capturing the

distribution of natural proteins for generative purposes could

be a powerful tool for protein design. If our technique or a future

iteration thereof is adopted broadly, care should be taken in

terms of the end use-cases of these designed samples and

downstream effects to ensure safe, non-nefarious, and ethical

applications. For projects in any domain, active oversight during

project initiation, experimental optimization, and deployment

phases should be put in place to ensure safe usage and limitation

of unintended harmful effects.
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METHOD DETAILS

Model
The family of ProGen2 models are autoregressive transformers with next-token prediction language modeling as the learning objec-

tive trained in various sizes with 151M, 764M, 2.7B, and 6.4B parameters. Table S1 summarizes the model specifications and choice

of hyper-parameters for the optimization such models. We developed and release the library JAXformer (https://github.com/

salesforce/jaxformer) for efficient scaling of training with model and data parallelism on TPU. We refer to the supplemental informa-

tion for details.

The architecture follows a standard transformer decoder with left-to-right causal masking. For the positional encoding, we adopt

rotary positional encodings.45 For the forward pass, we execute the self-attention and feed-forward circuits in parallel for improved

communication overhead following,46 that is, xt+1 = xt +mlpðlnðxt + attnðlnðxtÞÞÞÞ is altered to xt+1 = xt + attnðlnðxtÞÞ+mlpðlnðxtÞÞ for
which the computation of self-attention, attnðÞ, and feed-forward, mlpðÞ, with layer-norm, lnðÞ, is simultaneous.

Table S1 summarizes themodel specifications and choice of hyper-parameters for the optimization suchmodels. The choice of the

hyper-parameters was informed by Brown et al.3; however, the number of layers is reduced with a small number of self-attention

heads of relatively high dimensionality to improve overall utilization of the TPU-v3 compute. As explored in Brown et al.,3 Wang

and Komatsuzaki,46 and Nijkamp et al.,47 these variations introduce insignificant degradation of perplexity for sufficiently large

models, while considerably improving computational efficiency.

Data
The standard ProGen2models are pretrained on amixture of Uniref9026 and BFD3027 databases. Uniref90 are cluster representative

sequences from UniprotKB at 90% sequence identity. The BFD30 dataset is approximately 1=3 the size of Uniref90, majority from

metagenomic sources, commonly not full-length proteins, and clustered at 30% sequence identity. For the ProGen2-BFD90 model,

Uniref90 is mixed with representative sequences with at least 3 cluster members after clustering UniprotKB, Metaclust, SRC, and

MERC at 90% sequence identity. This BFD90 dataset is approximately twice the size as Uniref90.

To train the antibody-specific ProGen2-OAS, we collected unpaired antibody sequences from the OAS database.28 OAS is a

curated collection of 1.5B antibody sequences from eighty immune repertoire sequencing studies, which contains heavy- and

light-chain sequences from six species (humans, mice, rats, camel, rabbit, and rhesus). The sequences in OAS possess a consider-

able degree of redundancy, due both to discrepancies in the sizes of its constituent studies, as well as the innate biological
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redundancy of antibody sequences within organisms. To reduce this redundancy, we clustered the OAS sequences at 85%

sequence identity using Linclust,27 yielding a set of 554M sequences for model training. Alignment coverage in Linclust was calcu-

lated with respect to the target sequence (’’cov-mode 1’’), with all other parameters set to their default values.

All samples are provided to the model with a 1 or 2 character token concatenated at the N-terminal and C-terminal side of the

sequence. Each sequence is then provided as-is and flipped. For a given batch, proteins are concatenated with others to fill the

maximum token length during training.

Training
The scaling of large language models requires data and model parallelism. Google’s TPU-v3 hardware with a high-speed toroidal

mesh interconnect naturally allows for efficient parallelism. To efficiently utilize the hardware, the training of the models is imple-

mented in JAX.48 For parallel evaluation in JAX the pjitðÞ (https://jax.readthedocs.io/en/latest/_modules/jax/experimental/pjit.html)

operator is adopted. The operator enables a paradigm-named single-program, multiple-data (SPMD) code, which refers to a paral-

lelism technique where the same computation is run on different input data in parallel on different devices (https://jax.readthedocs.io/

en/latest/jax-101/06-parallelism.html). Specifically, pjitðÞ is the API exposed for the XLA SPMD partitioner in JAX, which allows a

given function to be evaluated in parallel with equivalent semantics over a logical mesh of compute.

Our library JAXformer recruits a designated coordinator node to orchestrate the cluster of TPU-VMs with a custom TCP/IP

protocol. For data parallelism, the coordinator partitions a batch and distributes the partitions to the individual TPU-VMs. For model

parallelism, a partitioning scheme is adopted where parameters are sharded across MXU cores inside a physical TPU-v3 board and

replicated across boards following Wang and Komatsuzaki46 and Shoeybi et al.49

For the pretraining of the ProGen2 models, Table S1 summarizes the hyper-parameters. We adopt the Adam50 optimizer with

ðb1;b2; eÞ = ð0:9;0:999; 1e � 08Þ and global gradient norm clipping51 of 0.8 and 1.0. The learning-rate function over time follows

GPT-33 with warm-up steps and cosine annealing.

Notably, the cross-entropy appeared to diverge from the projected power-law relation over time when following standard

configurations detailed in Brown et al.3 In particular, an increasing the global norm of the gradient as an indicator for a divergence

from the expected log-log linear behavior of cross-entropy over time was observed. Decreasing the learning rate, increasing

weight-decay (or equivalently l2-regularization under re-parameteriztation) and decreasing the gradient norm clipping factor re-

sulted in a near-constant global norm of the gradient which stabilized training.

For the finetuning of the ProGen2 models, the training is continued from a converged model. The state of the optimizer is re-initial-

ized such Adam’s moving averages for the first and second moment estimators are set to zero. The learning rate decay function is

adjusted such that initial learning-rate is decreased by a factor of 5. The finetuning covers at most two epochs over the finetuning

dataset to avoid over-fitting.

Evaluation data
Two test sets at differing levels of difficulty were constructed to examine language modeling performance. Test-max90 and Test-

max50 correspond to representative sequences from held-out clusters from the Uniref90+BFD30 set of sequences at 90% and

50% sequence identity respectively.

To assess zero-shot fitness prediction ability, we evaluate on three sets of experimentally-measured protein landscapes: narrow,

wide, and antibody-specific. The narrow landscape set is comprised of the19 datasets as provided by Hesslow et al.22 and generally

includes variants that are one or two substitutions away from a given wild-type/natural sequence. The wide landscape set involves

larger edit distances and are comprised of the Dallago et al.43 proteins, chorismate mutase proteins from Russ et al.,11 and the GFP

test set proteins from Rao et al.52

Lastly, for the antibody-specific landscape, we compiled a dataset consisting of binding, expression, and thermal stability

measurements for variants derived from eight distinct antibodies. We collected expression and antigen-binding enrichment

measurements for variants of the anti-VEGF g6 antibody from a DMS study.53 From a second DMS study, we collected binding

enrichment measurements for variants of the d44 anti-lysozyme antibody.54 Binding affinity (KD) and thermal stability measurements

(TM) for the remaining six antibodies (C143, MEDI8852UCA, MEDI8852, REGN10987, S309, and mAb114) were drawn from a recent

study on antibody affinity maturation using pretrained language models.55 We combined measurements for the mAb114 and

mAb114UCA antibodies from the original study into a single fitness dataset because the parent sequences shared high identity.

Sequence generation
To investigate the properties of sequences generated by the ProGen2 family of models, we sampled complete protein sequences in

three settings: universal generation after pretraining, fold-specific generation after fine-tuning, and antibody generation after pretrain-

ing on only antibody sequences. For universal protein generation, we sampled 6,757 sequences from the ProGen2-xlarge model.

A diverse set of sequences was sampled using a Cartesian product of temperature (T ˛ f0:2; 0:4;0:6;0:8; 1:0g) and nucleus

sampling (P˛ f0:5;0:7;0:9; 1:0g) parameters. To understand the effects of architecture-specific finetuning on sequence

generation, we compared the sequences produced by the ProGen2-large model after one and two epochs of finetuning. Using a

similar strategy as for universal protein generation, 30,000 sequences were generated using a Cartesian product of temperature

(T ˛ f0:2;0:4;0:6;0:8; 1:0g) and nucleus sampling (P˛ f0:7;0:9;1:0g) parameters for both model checkpoints. Structures were
e2 Cell Systems 14, 968–978.e1–e3, November 15, 2023
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predicted for all generated sequences with ESMFold30 using the default prediction parameters (three recycles). The sequential and

structural similarity to known proteins in the PDB was measured with Foldseek.32

Antibody sequences were generated using the ProGen2-OAS model after pretraining on a set of variable-fragment sequences

from the OAS.We evaluated sequences generated by themodel with and without initial-residue prompting. A set of 52K unprompted

sequences was generated using sampling parameters from a Cartesian product of temperature (T ˛ f0:2;0:4;0:6g) and nucleus

sampling probability (P˛ f0:5; 0:7;0:9;1:0g). An additional 470,000 full-length sequences were generated by initializing the sequence

with a three-residuemotif commonly observed in human heavy chain antibody sequences (EVQ). Prompted sequenceswere similarly

generated using a Cartesian product of temperature (T ˛ f0:2;0:4; 0:6; 0:8;1:0g) and nucleus sampling (P˛ f0:5;0:7; 0:9; 1:0g) pa-
rameters. The sequence identity of generated sequences against the training dataset was calculated with MMseqs2.56 IgFold57

was used to predict structures for all generated antibody sequences. The full four-model ensemble of IgFold models was used

for predictions, with PyRosetta58 refinement applied to model outputs. To investigate the therapeutic developability of generated

antibody sequences, aggregation propensity38 and solubility39 were calculated for all sequences. Aggregation propensity was calcu-

lated using the predicted structures and the Rosetta59 implementation of the SAP score tool.38 Solubility was calculated using the

public CamSol web server.39
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